Умножение и деление чисел с разными знаками. Умножение положительных и отрицательных чисел Как делить и умножать положительные и отрицательные

§ 1 Умножение положительных и отрицательных чисел

В этом уроке познакомимся с правилами умножения и деления положительных и отрицательных чисел.

Известно, что любое произведение можно представить в виде суммы одинаковых слагаемых.

Cлагаемое -1 нужно сложить 6 раз:

(-1)+(-1)+(-1) +(-1) +(-1) + (-1) =-6

Значит произведение -1 и 6 равно -6.

Числа 6 и -6 -противоположные числа.

Таким образом, можно сделать вывод:

При умножении -1 на натуральное число получится противоположное ему число.

Для отрицательных чисел, так же как для положительных, выполняется переместительный закон умножения:

Если натуральное число умножить на -1, то также получится противоположное число

При умножении любого неотрицательного числа на 1 получится это же число.

Например:

Для отрицательных чисел данное утверждение тоже верно: -5 ∙1 = -5; -2 ∙ 1 = -2.

При умножении любого числа на 1 получится это же число.

Мы уже убедились, что при умножении минус 1 на натуральное число получится противоположное ему число. При умножении отрицательного числа данное утверждение тоже справедливо.

Например: (-1) ∙ (-4) = 4.

Также -1 ∙ 0 = 0, число 0 противоположно само себе.

При умножении любого числа на минус 1 получится противоположное ему число.

Перейдем к другим случаям умножения. Найдем произведение чисел -3 и 7.

Отрицательный множитель -3 можно заменить произведением -1 и 3. Тогда можно применить сочетательный закон умножения:

1 ∙ 21 = -21, т.е. произведение минус 3 и 7 равно минус 21.

При умножении двух чисел с разными знаками получается отрицательное число, модуль которого равен произведению модулей множителей.

А чему равно произведение чисел с одинаковыми знаками?

Мы знаем, что при умножении двух положительных чисел получится положительное число. Найдем произведение двух отрицательных чисел.

Заменим один из множителей произведением с множителем минус 1.

Применим выведенное нами правило, при умножении двух чисел с разными знаками получается отрицательное число, модуль которого равен произведению модулей множителей,

получится -80.

Сформулируем правило:

При умножении двух чисел с одинаковыми знаками получается положительное число, модуль которого равен произведению модулей множителей.

§ 2 Деление положительных и отрицательных чисел

Перейдем к делению.

Подбором найдем корни следующих уравнений:

y ∙ (-2) = 10. 5 ∙ 2 = 10, значит х = 5; 5 ∙ (-2) = -10, значит а = 5; -5 ∙ (-2) = 10, значит y = -5.

Запишем решения уравнений. В каждом уравнении неизвестен множитель. Неизвестный множитель находим, разделив произведение на известный множитель, значения неизвестных множителей мы уже подобрали.

Проанализируем.

При делении чисел с одинаковыми знаками (а это первое и второе уравнения) получается положительное число, модуль которого равен частному модулей делимого и делителя.

При делении чисел с разными знаками (это третье уравнение) получается отрицательное число, модуль которого равен частному модулей делимого и делителя. Т.е. при делении положительных и отрицательных чисел знак частного определяется по тем же правилам, что знак произведения. А модуль частного равен частному модулей делимого и делителя.

Таким образом, мы сформулировали правила умножения и деления положительных и отрицательных чисел.

Список использованной литературы:

  1. Математика. 6 класс: поурочные планы к учебнику И.И. Зубаревой, А.Г. Мордковича//автор-составитель Л.А. Топилина. – Мнемозина, 2009.
  2. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений. И.И. Зубарева, А.Г. Мордкович. - М.: Мнемозина, 2013.
  3. Математика. 6 класс: учебник для учащихся общеобразовательных учреждений./Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2013.
  4. Справочник по математике - http://lyudmilanik.com.ua
  5. Справочник для учащихся в средней школе http://shkolo.ru

В данной статье сформулируем правило умножения отрицательных чисел и дадим ему объяснение. Будет подробно рассмотрен процесс умножения отрицательных чисел. На примерах показаны все возможные случаи.

Умножение отрицательных чисел

Определение 1

Правило умножения отрицательных чисел заключается в том, что для того, чтобы умножить два отрицательных числа, необходимо перемножить их модули. Данное правило записывается так: для любых отрицательных чисел – a , - b данное равенство считается верным.

(- а) · (- b) = a · b .

Выше приведено правило умножения двух отрицательных чисел. Исходя из него, докажем выражение: (- а) · (- b) = a · b . Статья умножение чисел с разными знаками рассказывает о том, что равенств а · (- b) = - a · b справедливое, как и (- а) · b = - a · b . Это следует из свойства противоположных чисел, благодаря которому равенства запишутся следующим образом:

(- a) · (- b) = (- a · (- b)) = - (- (a · b)) = a · b .

Тут явно видно доказательство правила умножения отрицательных чисел. Исходя из примеров явно, что произведение двух отрицательных чисел – положительное число. При перемножении модулей чисел результат всегда положительное число.

Данное правило применимо для умножения действительных чисел, рациональных чисел, целых чисел.

Теперь рассмотрим подробно примеры умножения двух отрицательных чисел. При вычислении необходимо пользоваться правилом, написанным выше.

Пример 1

Произвести умножение чисел - 3 и - 5 .

Решение.

По модулю умножаемые данные два числа равны положительным числам 3 и 5 . Их произведение дает в результате 15 . Отсюда следует, что произведение заданных чисел равно 15

Запишем кратко само умножение отрицательных чисел:

(- 3) · (- 5) = 3 · 5 = 15

Ответ: (- 3) · (- 5) = 15 .

При умножении отрицательных рациональных чисел, применив разобранное правило, можно мобилизоваться к умножению дробей, умножению смешанных чисел, умножению десятичных дробей.

Пример 2

Вычислить произведение (- 0 , 125) · (- 6) .

Решение.

Используя правило умножения отрицательных чисел, получим, что (− 0 , 125) · (− 6) = 0 , 125 · 6 . Для получения результата необходимо выполнить умножение десятичной дроби на натуральное число столбиков. Это выглядит так:

Получили, что выражение примет вид (− 0 , 125) · (− 6) = 0 , 125 · 6 = 0 , 75 .

Ответ: (− 0 , 125) · (− 6) = 0 , 75 .

В случае, когда множители – иррациональные числа, тогда их произведение может быть записано в виде числового выражения. Значение вычисляется только по необходимости.

Пример 3

Необходимо произвести умножение отрицательного - 2 на неотрицательное log 5 1 3 .

Решение

Находим модули заданных чисел:

2 = 2 и log 5 1 3 = - log 5 3 = log 5 3 .

Следуя из правил умножения отрицательных чисел, получим результат - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 . Это выражение и является ответом.

Ответ: - 2 · log 5 1 3 = - 2 · log 5 3 = 2 · log 5 3 .

Для продолжения изучения темы необходимо повторить раздел умножение действительных чисел.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Положительные и отрицательные числа изучаются в самом начале курса математики, в шестом классе. Хотя дальнейшее обучение требует постоянно работать с этими числами, неудивительно, что по прошествии времени некоторые мелочи забываются - и люди начинают совершать грубые ошибки.

Умножение и деление - одни из самых частых действий с числами, имеющими разные знаки. Разберемся и вспомним, как нужно перемножать и делить такие числа между собой, ставя в ответе правильный знак.

Умножение чисел с разными знаками

Это правило - одно из самых простых в арифметике.

  • Если перед нами есть некое положительное число «а», и его требуется умножить на отрицательное число «z», то мы просто перемножаем числа - а потом ставим перед результатом знак «минус».
  • Можно сказать и так - чтобы умножить друг на друга числа с разными знаками, нужно перемножить между собой модули множителей, а потом вернуть знак «минус» в ответ.

Для утверждения справедлива следующая цифровая запись: -а*z = - (|а|*|z|). Также напомним, что для нуля действуют особые правила - если на него умножается какое-либо число, положительное или отрицательное, ответ в любом случае будет равен нулю.

Возьмем пару простых примеров.

  • Если выражение выглядит, как – 5*6, то решать его нужно следующим образом: -5*6 = - (|5|*|6|) = - 30.
  • Если выражение следующего типа - - 7*0, то в ответе сразу пишется 0.

Деление чисел с разными знаками

Для таких случаев тоже действует очень простое правило. Оно похоже на предыдущее - если задача требует разделить «–а» на «b», или «a» на «–b», то для начала мы берем модули чисел, их абсолютные значения, и совершаем процесс деления безо всякой перестановки делимого и делителя.

Таким образом находится частное - а затем к нему добавляется знак «минус». Неважно, выступает ли в роли делимого отрицательное число, или наоборот, мы делим число со знаком «плюс» на отрицательное - ответ всегда будет со знаком «минус». Иначе говоря, числовым методом мы записываем это так: -a: b = - (|a| : |b|).

Например, - 10: 2 = - (10:2) = - 5, или 21: (-3) = - (21:3) = - 7. В конечном итоге деление совсем не сложное и сводится к привычным нам действиям над модулями чисел.

И точно так же, как в предыдущем случае, на особенном положении находится нуль. Его присутствие в выражении автоматически дает нуль в ответе. И неважно, это 0:а или а:0 - и попытка деления нуля, и деление на нуль дают одинаковый результат.

На этом уроке мы повторим правила сложения положительных и отрицательных чисел. Также научимся умножать числа с разными знаками и узнаем правила знаков для умножения. Рассмотрим примеры умножения положительных и отрицательных чисел.

Свойство умножения на ноль остается верным и в случае отрицательных чисел. Ноль умножить на любое число - будет ноль.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.

Домашнее задание

  1. Интернет-портал Mnemonica.ru ().
  2. Интернет-портал Youtube.com ().
  3. Интернет-портал School-assistant.ru ().
  4. Интернет-портал Bymath.net ().

В центре внимания этой статьи находится деление отрицательных чисел . Сначала дано правило деления отрицательного числа на отрицательное, приведено его обоснования, а после этого приведены примеры деления отрицательных чисел с подробным описанием решений.

Навигация по странице.

Правило деления отрицательных чисел

Прежде чем дать правило деления отрицательных чисел, напомним смысл действия деление. Деление по своей сути представляет нахождение неизвестного множителя по известному произведению и известному другому множителю. То есть, число c является частным от деления a на b , когда c·b=a , и наоборот, если c·b=a , то a:b=c .

Правило деления отрицательных чисел следующее: частное от деления одного отрицательного числа на другое равно частному от деления числителя на модуль знаменателя.

Запишем озвученное правило с помощью букв. Если a и b отрицательные числа, то справедливо равенство a:b=|a|:|b| .

Равенство a:b=a·b −1 легко доказать, отталкиваясь от свойств умножения действительных чисел и определения взаимно обратных чисел. Действительно, на этой основе можно записать цепочку равенств вида (a·b −1)·b=a·(b −1 ·b)=a·1=a , которая в силу смысла деления, упомянутого в начале статьи, доказывает, что a·b −1 есть частное от деления a на b .

А это правило позволяет от деления отрицательных чисел перейти к умножению.

Осталось рассмотреть применение рассмотренных правил деления отрицательных чисел при решении примеров.

Примеры деления отрицательных чисел

Разберем примеры деления отрицательных чисел . Начнем с простых случаев, на которых отработаем применение правила деления.

Пример.

Разделите отрицательное число −18 на отрицательное число −3 , после этого вычислите частное (−5):(−2) .

Решение.

По правилу деления отрицательных чисел частное от деления −18 на −3 равно частному от деления модулей этих чисел. Так как |−18|=18 и |−3|=3 , то (−18):(−3)=|−18|:|−3|=18:3 , осталось лишь выполнить деление натуральных чисел , имеем 18:3=6 .

Аналогично решаем вторую часть задания. Так как |−5|=5 и |−2|=2 , то (−5):(−2)=|−5|:|−2|=5:2 . Этому частному отвечает обыкновенная дробь 5/2 , которую можно записать в виде смешанного числа .

Эти же результаты получаются, если использовать другое правило деления отрицательных чисел. Действительно, числу −3 обратно число , тогда , теперь выполняем умножение отрицательных чисел : . Аналогично, .

Ответ:

(−18):(−3)=6 и .

При делении дробных рациональных чисел удобнее всего работать с обыкновенными дробями. Но, если удобно, то можно делить и конечные десятичные дроби .

Пример.

Выполните деление числа −0,004 на −0,25 .

Решение.

Модули делимого и делителя равны соответственно 0,004 и 0,25 , тогда по правилу деления отрицательных чисел имеем (−0,004):(−0,25)=0,004:0,25 .

  • либо выполнить деление десятичных дробей столбиком ,
  • либо перейти от десятичных дробей к обыкновенным, после чего разделить соответствующие обыкновенные дроби.

Разберем оба подхода.

Чтобы разделить столбиком 0,004 на 0,25 сначала перенесем запятую на 2 цифры вправо, при этом придем к делению 0,4 на 25 . Теперь выполняем деление столбиком:

Таким образом, 0,004:0,25=0,016 .

А теперь покажем, как бы выглядело решение, если бы мы решили осуществить перевод десятичных дробей в обыкновенные . Так как и , то , и выполняем