Диффузия: определение и примеры в окружающем мире. Диффузия воды Понятие агрегатного состояния вещества

Диффузия переводится с латыни, как распространение или взаимодействие. Диффузия является очень важным понятием физики. Суть диффузии заключается в проникновении одних молекул вещества в другие. В процессе перемешивания происходит выравнивание концентраций обоих веществ по занимаемому ими объему. Вещество из места с большей концентрацией переходит в место с меньшей концентрацией, за счет этого и происходит выравнивание концентраций.

Итак, явление, при котором происходит взаимное проникновение молекул одного вещества между молекулами другого, называется диффузией.

Рассмотрев, что такое диффузия, следует перейти к условиям, которые могут оказывать воздействие на скорость протекания этого явления.

Факторы, влияющие на скорость диффузии

Чтобы понять, от чего зависит диффузия, рассмотрим факторы, которые на нее влияют.

Диффузия зависит от температуры . Скорость диффузии будет увеличиваться с увеличением температуры, потому что при повышении температуры будет увеличиваться скорость движения молекул, то есть молекулы будут быстрее перемешиваться. (Вы все знаете, что в холодной воде сахар расстворяется очень долго)

А при добавлении внешнего воздействия (человек размешивает сахар в воде) диффузия будет протекать быстрее. Агрегатное состояние вещества тоже будет влиять на то, от чего зависит диффузия, а именно на скорость диффузии. Тепловая диффузия зависит от вида молекул. Например, если предмет металлический, то тепловая диффузия протекает быстрее, в отличие от того, если бы этот предмет был сделан из синтетического материала. Очень медленно протекает диффузия между твердыми материалами.

Итак скорость диффузии зависит от: температуры, концентрации, внешних воздействий, агрегатного состояния вещества

Диффузия имеет огромное значение в природе и в жизни человека.

Примеры диффузии

Чтобы лучше разобраться, что такое диффузия, рассмотрим ее на примерах.Давайте вместе приведем примеры процесса диффузии в газах. Варианты проявления этого явления могут быть таковыми:

Распространение запаха цветов;

Распространение запаха курочки гриль, которая так нравится щенку Антошке;

Слезы из-за нарезания лука;

Шлейф духов, который можно почувствовать в воздухе.

Промежутки между частицами в воздухе довольно большие, частицы двигаются хаотично, поэтому диффузия газообразных веществ происходит достаточно быстро.

Простой и доступный каждому пример диффузия твердых тел – это взять два куска разноцветного пластилина и разминая их в руках, наблюдать, как смешиваются цвета. А, соответственно, без внешнего воздействия, если просто прижать два куска друг к другу, потребуются месяцы или даже годы, чтобы два цвета хоть немного перемешались, так сказать, проникли один в одного.

Варианты проявления диффузия в жидкостях могут быть таковыми:

Растворение капли чернил в воде;

- "Белье полиняло" окрас мокрых тканей;

Соление овощей и варка варенья

Итак, диффузией является перемешивание молекул вещества при их беспорядочном тепловом движении .

Газизова Гузель

«Шаги в науку – 2016»

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательная учреждение

« Арская средняя общеобразовательная школа № 7» Арского

Муниципального района Республика Татарстан.


Республиканская научно-практическая конференция

«Шаги в науку – 2016»

Секция: Физика и техническое творчество

Исследовательская работа

Тема: Наблюдение диффузии в воде и влияние температуры на скорость диффузии.

Должность.

Газизова Гузель Робертовна Зиннатуллин Фидарис Файсалович

ученица 7 класса учитель физики 1 кв. категории.

2016 г.

  1. Введение Стр. 3
  1. Проблема исследования
  2. Актуальность темы и практическая значимость исследования
  3. Объект и предмет исследования
  4. Цели и задачи
  5. Гипотеза исследования
  1. Основная часть исследовательской работы Стр.5
  1. Описание места и условий наблюдений и опытов
  2. Методика исследования, её обоснованность
  3. Основные результаты эксперимента
  4. Обобщение и выводы
  1. Заключение Стр.6
  2. Список литературы Стр.7

Диффузия (лат. diffusio - распространение, растекание, рассеивание, взаимодействие) - процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией.

Если в раствор медного купороса аккуратно налить воду, то между двумя слоями образуется четкая граница раздела (медный купорос тяжелее воды). Но через два дня в сосуде будет однородная жидкость. Это происходит совершенно произвольно.

Другой пример связан с твёрдым телом: если один конец стержня нагреть, или электрически зарядить, распространяется тепло (или соответственно электрический ток) от горячей (заряженной) части к холодной (незаряженной) части. В случае металлического стержня тепловая диффузия развивается быстро, а ток протекает почти мгновенно. Если стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно, а диффузия электрически заряженных частиц - очень медленно. Диффузия молекул протекает в общем ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микрометров только через несколько тысяч лет.

Первое количественное описание процессов диффузии было дано немецким физиологом А. Фиком в 1855 году.

Диффузия имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы.

Диффузия в жизни человека

Изучая явление диффузии, я пришла к выводу, что именно благодаря этому явлению человек живет. Ведь, как известно, воздух, которым мы дышим, состоит из смеси газов: азота, кислорода, углекислого газа и паров воды. Находится он в тропосфере - в нижнем слое атмосферы. Если бы не было диффузионных процессов, то наша атмосфера просто расслоилась бы под действием силы тяжести, которая действует на все тела, находящиеся на поверхности Земли или вблизи нее, в том числе и на молекулы воздуха. Внизу расположился бы боле тяжелый слой углекислого газа, над ним – кислород, выше - азот и инертные газы. А ведь для нормальной жизнедеятельности нам необходим именно кислород, а не углекислый газ. Диффузия происходит и в самом организме человека. Дыхание и пищеварение человека основано на диффузии. Если говорить о дыхании, то в каждый момент времени в кровеносных сосудах, оплетающих альвеолы, находится примерно 70 мл крови, из которой в альвеолы диффундирует углекислый газ, а в обратном направлении - кислород. Огромная поверхность альвеол даёт возможность уменьшить толщину слоя крови, обменивающейся газами с внутриальвеолярным воздухом, до 1 мкм, что позволяет менее чем за 1 с насытить это количество крови кислородом и освободить её от избытка углекислоты.

Также это явление влияет и на организм человека - кислород воздуха проникает в кровяные капилляры легких путем диффузии через стенки альвеол, а затем растворяясь в них, разносится по всему организму, обогащая его кислородом.

Диффузия используется во многих технологических процессах: засолка, получение сахара (стружка сахарной свёклы промывается водой, молекулы сахара диффундируют из стружки в раствор), варка варенья, окрашивание тканей, стирка вещей, цементация, сварка и пайка металлов, в том числе диффузионная сварка в вакууме (свариваются металлы, которые другими методами соединить невозможно, - сталь с чугуном, серебро с нержавеющей сталью и т.д.) и диффузионная металлизация изделий(поверхностное насыщение стальных изделий алюминием, хромом, кремнием), азотирование - насыщение поверхности стали азотом (сталь становится твёрдой, износоустойчивой), цементация - насыщение стальных изделий углеродом, цианирование -насыщение поверхности стали углеродом и азотом.

Как видно из приведенных примеров диффузионные процессы играют очень важную роль в жизни людей

Проблема: Почему диффузия протекает по–разному при разной температуре?

Актуальность данного исследования я вижу в том, что тема «Диффузия в жидких, твердых и газообразных состояниях» является жизненно важной не только курсе физики. Знания о диффузии могут пригодиться мне в повседневной жизни. Эти сведения помогут подготовиться к экзамену по физике за курс основной и средней школы. Тема мне очень понравилась, и я решил изучить её глубже.

Объект моего исследования – диффузия, протекающая в воде при разной температуре, а предметом изучения – наблюдения с помощью постановки опытов в различных температурных режимах.

Цель работы:

  1. Расширить знания о диффузии, её зависимости от разных факторов.
  2. Объяснить физическую природу явления диффузии на основе молекулярного строения вещества.
  3. Выяснить зависимость скорости диффузии от температуры у смешивающихся жидкостей.
  4. Подтвердить теоретические факты опытными результатами.
  5. Обобщить полученные знания и выработать рекомендации.

Задачи исследования:

  1. Исследовать скорость протекания диффузии в воде при разной температуре.
  2. Доказать, что испарение жидкости есть результат движения молекул

Гипотеза: при высокой температуре молекулы движутся быстрее и из-за этого быстрее перемешиваются.

Основная часть исследовательской работы

Для своих исследований я взяла два стакана. В один налил теплой воды, а в другой – холодной. Одновременно опустил в них по пакетику чая. Теплая вода окрасилась в коричневый цвет быстрее, чем холодная. Известно, что в теплой воде молекулы движутся быстрее, так как их скорость зависит от температуры. А значит, молекулы чая быстрее проникнут между молекулами воды. В холодной воде скорость молекул замедленна, поэтому явление диффузии здесь протекает медленнее. Явление проникновения молекул одного вещества между молекулами другого называется диффузией.

Затем я налил в два стакана одинаковое количество воды. Один стакан оставил на столе в комнате, а другой поставил в холодильник. Через пять часов сравнил уровни воды. Оказалось, что в стакане из холодильника, уровень практически не изменился. Во втором - уровень заметно уменьшился. Это вызвано передвижением молекул. И оно больше, чем больше температура. При большей скорости молекулы воды, приближаясь к поверхности, «выпрыгивают». Данное движение молекул называется испарением. Опыт показал, что испарение протекает быстрее при более высокой температуре, так как чем быстрее движутся молекулы, тем больше молекул улетает из жидкости за одно и то же время. В холодной воде скорость маленькая, поэтому они остаются в стакане.

Заключение:

На основании проведенного эксперимента и наблюдений за диффузией в воде, имеющей разную температуру, я убедился, что температура сильно влияет на скорость молекул. Доказательством этого послужила разная степень протекания испарения. Таким образом, чем горячее вещество, тем больше скорость молекул. Чем холоднее – тем меньше скорость молекул. Следовательно, диффузия в жидкостях будет проходить быстрее при высокой температуре.

Литература:

  1. А.В.Перышкин. Физика 7 класс. М.: Дрофа, 2011.
  2. Библиотека «Первого сентября». М.: «Первое сентября», 2002.
  3. Биофизика на уроках физики. Из опыта работы. М., «Просвещение», 1984.

" статьёй . И поговорим про эту проблему систем обратного осмоса, особенно характерную для фильтров, описанных в статье "Аппарат обратного осмоса ".

Проблема: диффузионные загрязнения воды. Соответственно, предполагается, что с ней нужно как-то бороться. Ну а для того, чтобы знать, с чем бороться, нужно разобраться с физическим механизмом процесса. Ничего сложного — простые школьные знания.

Что такое диффузия? Наверное, многие помнят по школе об опыте, когда учитель выливал где-то в одном месте класса нечто пахучее, а потом запах распространялся по всей комнате. Или чернила в воду, а они потом расплываются на всю ёмкость. Это и есть примеры диффузии, или постепенного перехода одного вещества в другое. Даже между металлами есть подобные взаимодействия, правда очень медленные и не относящиеся к делу.

Что будет, если взять чистую воду, и подлить обычной грязной воды? Всё случится очень закономерно — загрязнения равномерно распределятся по всей ёмкости. Похожая ситуация возникает с многоступенчатыми бытовыми системами обратного осмоса.

Похожая, но не точно такая же. Разница состоит в том, что грязную воду и чистую воду разделяет полупроницаемая перегородка, мембрана. И в идеале, то есть, теоретически, через этот барьер-мембрану может пройти исключительно вода. Но — только в идеале.

На самом деле поры в мембране не одинаковые по размеру. В среднем — они действительно пропускают только молекулы воды. Однако всегда существует разброс. Насколько велик разброс — это уже дело технологии изготовления мембран. Естественно, чем лучше мембрана, тем меньше этот разброс. Но разброс есть всегда.

Что практически означает наличие этого разброса? Это означает, что качество очистки воды всегда будет ниже 100 %. Если бы разброса не было, то всё кроме воды и соразмерных частиц удалялось бы полностью. Однако разброс есть. И степень очисти для технологии обратного осмоса колеблется в пределах 90-99,999 %. Для бытовой многоступенчатой гиперфильтрации типа "капельница" стандартным и типичным является степень очистки 90-95 %.

Очень редко для бытовых капельниц степень очистки достигает 99 %.

Итак, есть мембрана с разбросом пор, есть по одну сторону загрязнённая вода, по другую — очищенная вода. В рабочем состоянии, когда вода двигается ВДОЛЬ мембраны (потому что так мембрана меньше забивается), у примесей воды нет «времени» на то, чтобы пролезть через точно такие же по размеру, чем они сами, поры. Это связано с особенностями взаимодействия поверхности мембраны и текущей водой.

НО! Когда вода не двигается вдоль мембраны, загрязнения получают вполне реальную возможность проникать через эти соответствующие им по размерам поры на сторону чистой воды. А вода с чистой стороны, соответственно, стремится попасть на ту сторону, где большее количество загрязнений. Чтобы был выполнен закон диффузии — равномерное распределение вещества в веществе. То, что вода переходит с «чистой» стороны мембраны на «грязную», не страшно. Намного опаснее другой процесс, диффузионное загрязнение воды на «чистой» стороне.

Диффузионное загрязнение происходит на всех типах обратноосмотических установок, но опасно только на бытовых многоступенчатых осмосах. Почему? Потому что в них нет возможности сбросить диффузионные загрязнения. И они попадают прямиком в бак с питьевой водой. А оттуда — в стакан.

То есть, степень очистки воды уменьшается ещё больше.

Разберём это подробнее. Для этого вернёмся к схеме бытовой многоступенчатой системы обратного осмоса (озвученной более подробно в статье "Аппарат обратного осмоса "), а точнее, с направлениями и типами потоков воды. Они на схеме обозначены буквами.

А — исходная, загрязнённая вода. Она проходит по трём ступеням очистки воды, а далее попадает на мембрану обратного осмоса. На мембране вода фильтруется, концентрат (загрязнённая вода) попадает в канализацию (поток С), а очищенная вода (поток В) с небольшой скоростью накапливается в баке.

Вот здесь и собака зарыта. Диффузионные загрязнения в подобных системах гиперфильтрации невозможно слить или убрать. Они попадают в накопительный бак. А оттуда — потребителю в чашку.

Содержание солей в очищенной воде в баке возрастает очень ненамного. Основную опасность представляют собой бактерии. По идее, бактерии вообще не могут проникнуть через мембрану обратного осмоса. Это так — но во время движения воды. Когда вода стоит, бактерии, особенно узкие, могут «протиснуться» между волокнами мембраны. Это положение усугубляется тем, что бактерии с удовольствием поселяются на поверхности мембраны и образуют там свои колонии. При больших давлениях и скоростях потоков воды, как в промышленных системах гиперфильтрации, им это не удаётся. Но в обычных бытовых капельницах — да с радостью. Тем более что вода туда поступает уже не хлорированная.

Таким образом, появляется вероятность (естественно, не 100 %), что в накопительном баке бытовой обратноосмотической системы находятся диффузионные загрязнения, в особенности бактерии и продукты их жизнедеятельности.

Вышесказанное подтверждает последняя ступень очистки воды. Её назначение — дополнительное обеззараживание воды (с помощью угля с серебром и/или ультрафиолетовой лампы). Поток воды D из бака поступает на ступень дезинфекции, а оттуда уже очищенный от бактерий поток Е подаётся на кран чистой воды. Так контролируется вторичное бактериальное загрязнение очищенной воды в бытовых многоступенчатых системах обратного осмоса.

Нужно добавить, что эффективность очистки воды многоступенчатыми осмосами очень невысока. Эффективность очистки воды — это не то же самое, что глубина очистки воды. Эффективность — это, иными словами, коэффициент полезного действия, КПД системы. То есть, соотношение концентрата (воды, которая сбрасывается в канализацию), очищенной воды и исходной воды.

Так, в процессе работы бытовой многоступенчатой осмотической системы в канализацию сбрасывается 80-85 % от входящей воды (что сильно зависит от наполенности бака; при пустом баке эффективность выше, при полном — ниже). То есть, если в день вы используете 20 литров очищенной воды, то при этом сбрасываете в канализацию 80 литров воды.

Вот такая вот проблема есть у обратного осмоса — диффузионные загрязнения воды.

Но с этим можно справиться! По крайней мере, с помощью изменения организации самой системы. Об этом — подробнее в следующих статьях.

По материалам http://voda.blox.ua/2008/08/Kak-vybrat-filtr-dlya-vody-28.html

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Вконтакте

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

Осмос - диффузия воды через полупроницаемую мембрану, разделяющую два раствора, из меньшей концентрации в большую.[ ...]

В начале третьего периода диффузия воды обычно происходит без особой трудности. Однако по мере высушивания древесины скорость диффузии настолько снижается, что на поверхности древесины образуется сухой слой. Таким образом, главным условием, от которого зависит скорость сушки в третьем периоде, является диффузия воды внутри высушиваемой древесины. По сравнению со значением диффузии, задерживающая роль газовой пленки теперь становится незначительной. Точно так же скорость теплоносителя и парциальное давление водяного пара оказывают на процесс лишь второстепенное влияние.[ ...]

Характер заболевания. Болезнь заключается в диффузии воды из организма в кишечный тракт. Количество этой диффундирующей воды колоссально (порядка 30 л/сут), и поэтому она непрерывно выводится в виде рвоты и жидкого стула. В результате наступает обезвоживание организма, стремительно падает напряженность окислительных процессов, и ткани насыщаются продуктами неполного сгорания и углекислотой. Инкубационный период - порядка трех дней.[ ...]

Осмотическое давление - давление, которое является результатом диффузии воды через мембрану (из меньшей концентрации раствора в большую).[ ...]

Повышение относительного количества подвижных мономерных молекул воды и активности гидроксильных ионов по отношению к водородным, по-видимому, обусловливает ускорение диффузии воды, что сказывается на процессах осмоса, имеющих громадное значение для жизнедеятельности растительных и животных организмов.[ ...]

В других работах исследователи пришли к выводу, что анион сульфогруппы в катионите связывает три молекулы воды . По-видимому, различие результатов в большой мере зависит от различия методов оценки величины гидратации ионизированных групп в ионообменной смоле. Во всяком случае, достаточно точно установлено, что сульфокатиониты в Н+-форме набухают сильнее, чем в солевых формах, тогда как слабокислотные катиониты» которые в Н -форме практически не ионизированы, набухают преимущественно в солевых формах. Слабоосновные аниониты по той же причине набухают в солевых формах также значительно сильнее, чем в ОН -форме . Неиопообменный перенос электролитов навстречу диффузии воды при установлении осмотического равновесия зерен ионита с внешним раствором в разбавленных растворах не оказывает сколько-нибудь существенного влияния на поведение ионообменных смол при обессо-ливании воды или регенерации ионообменных фильтров. С увеличением концентрации кислот и щелочей в регенерационных растворах этот неионообменный перенос электролитов оказывается настолько значительным, что им пренебречь нельзя.[ ...]

Хорошо известно, что в некоторых гидратах имеется только кольцевой или только вакансионный механизм диффузии, не связанный с разупорядоченйем. В этих случаях диффузия наблюдается, как правило, лишь при высоких температурах. В этом кристалле молекулы воды расположены в шестерных зигзагообразных кольцах, как будто вырезанных из структуры льда. Оси всех колец параллельны друг другу, а направления Н-II образуют с осями колец угол, равный 47°. Отсюда по правилам усреднения дипольного взаимодействия можно найти усредненную константу этого взаимодействия - 9 кГц. Измерения показалц, что в дНоптазе диффузия наблюдается лишь при температурах выше +120°С, причем характеристическая частота составляет именно 9 кГц. Для апо-филлита - другого гидратированного силиката - диффузия начинается при 170°С, расчет и опыт дают практически совпадающие значения характеристикой частоты -6,5 кГц. В патролите диффузия воды при +150°С усредняет диполь-дипольное взаимодействие до нуля в полном еогласии с ожидаемым значением ввиду того, что в этом кристалле угол между векторами Н-Н и осью симметрии практически равен магическому.[ ...]

Шампетье и Боннэ утверждали, что происходит избирательное поглощение кислоты хлопком. Казбекар и Ниль обнаружили избирательное поглощение воды целлофаном при набухании в растворах кислоты за счет более быстрой диффузии воды по сравнению с кислотой в пленку. Подробного исследования избирательного поглощения воды и кислоты не проводили.[ ...]

Мембрана (от лат. membrana - перепонка) - тонкая пленка или пластинка, обычно закрепленная по контуру; осмос (от греч. osmos -толчок, давление) - односторонняя диффузия воды через полупроницаемую перегородку (мембрану), отделяющую раствор от чистой воды или раствора меньшей концентрации; ультрафильтрация (от лат. ultra -сверх, за пределами) - разделение растворов и коллоидных систем с помощью полупроницаемых мембран в специальных аппаратах под давлением 0,1 - 0,8 МПа.[ ...]

При температурах свыше 200-250 К спектры ЯМР широкопористых цеолитов резко (в сотни раз) сужаются и приобретают характерную для диффундирующей в кристаллах воды структуру. При этом существенны два факта. Во-первых, ширина суженного спектра Остается постоянной вплоть до температуры дегидратации (200-300°С и более). Это озпачает, что при всех температурах молекула движется по одному и тому же строго заданному структурой кристалла диффузионному пути в точности так же, как в кристаллогидратах. Во-Ьторых, несмотря на низкотемпературную подвижность, сохраняются очень высокие значения темп рату-ры дегидратации. Данная особённость резко отличает цеолиты от кристаллогидратов, в которых дегидратация или плавление редко происходит при температурах заметно выше 100°С. Природа высокотемпературного гидратированного состояния цеолитов прояснилась только после обнаружения «двухфазного» строения цеолитной воды. Оказалось, что диффузия молекул воды в цеолитных каналах не мешает некоторой части этих молекул быть жестко связанной в цеолитных каналах. Например, в мордените, несмотря на начало диффузионного сужения спектра ЯМР при -100°С, даже при +100°С остается около 10% жестко связанной воды (при этом полная дегидратация имеет место лишь при 450°С). Было предположено, что эти жестко связанные молекулы подобно пробкам блокируют цеолитный канал, преграждая путь диффундирующим молекулам. Отсюда естественно выдвинуть изохорическую модель цеолитной воды в замкнутом пространстве каналов. Нагрев повышает давление внутри канала а вместе с давлением растет и температура «плавления» цеолитной воды. В соответствии со сказанным диффузию воды в гидратированных цеолитах можно рассматривать как изохорическое (в замкнутом объеме) плавление. Очевидно также, что эффективность «пробок» в запирании объема каналов связана с их коллективными свойствами, вытекающими из наличия более прочных связей вода-вода в определенных участках цеолитных каналов.[ ...]

Сравнение с опытом одновременно подтверждает и не подтверждает эти ожидания. Но из закономерности почему-то выпадают гидраты хлоридов и бромидов кальция, стронция и бария, в которых, вопреки всему, диффузия воды не обнаруживается вплоть до плавления.[ ...]

Изучена возможность использования ферритов кальция и цинка в грунтовках наряду с противокоррозионными пигментами для замены токсичных и дорогостоящих пигментов на основе свинца и хрома . Грунтовки, содержащие ферриты кальция и цинка, представляют более серьезный барьер для диффузии воды и кислорода, чем покрытия, пигментированные оксидом железа. В ал-кидных красках более эффективным является феррит кальция. Соотношение между инертным пигментом и ферритом кальция в грунтовках составляет 60:40. В хлоркаучуковых красках более эффективен феррит цинка, а соотношение между инертным пигментом и ферритом цинка составляет 80:20-70:30. Отмечается, что защитное действие ферритов кальция и цинка слабее, чем у классических противокоррозионных пигментов.[ ...]

Лучше объясняет механизм отравления живых организмов другая теория, по которой отравление происходит в результате попадания ионов ртути и меди в органы дыхания или пищеварения, в результате чего происходит свертывание белка этих органов и организм погибает. По данным этой теории защитное действие окиси ртути и закиси меди объясняется следующим образом. Вследствие диффузии морской воды в красочную пленку окись ртути и закись меди подвергаются воздействию КаС1, со-держащегося в морской воде. В результате этого воздействия образуется, как было указано выше, соль сложного состава 6МаС1 ЗН СЬ СиС12. Раствор этой соли, содержащий ионы ртути и меди, медленно диффундируя в направлении обратном диффузии воды, создает в непосредственной близости к судну зону, ядовитую для представителей морской фауны, Эта зона становится ядовитой, как было указано выше, уже при незначительном содержании в воде ионов ртути и меди. При таком механизме действия окиси ртути и закиси меди все простейшие животные организмы, попавшие в зону, отравленную ионами ртути и меди, гибнут и к судну могут случайно подойти только отдельные их экземпляры. Сплошное же обрастание может начаться только после значительного обеднения наружного слоя краски ртутью и медью. На практике такое течение процесса обрастания судна и наблюдается - обрастание начинается с поселения отдельных экземпляров молюсков, а сплошное обрастание, значительно менее интенсивное, чем при применении обычной краски, начинается значительно позже, чем в случае окраски судна обычной масляной краской.