Непрерывные случайные величины. Примеры решения задач

Глава 6. Непрерывные случайные величины.

§ 1. Плотность и функция распределения непрерывной случайной величины.

Множество значений непрерывной случайной величины несчетно и обычно представляет собой некоторый промежуток конечный или бесконечный.

Случайная величина x(w),заданная в вероятностном пространстве {W, S,P}, называется непрерывной (абсолютно непрерывной) W, если существует неотрицательная функция такая, что при любых х функцию распределения Fx(x) можно представить в виде интеграла

Функция называется функцией плотности распределения вероятностей .

Из определения вытекают свойства функции плотности распределения :

1..gif" width="97" height="51">

3. В точках непрерывности плотность распределения равна производной функции распределения: .

4. Плотность распределения определяет закон распределения случайной величины, т. к. определяет вероятность попадания случайной величины на интервал :

5.Вероятность того, что непрерывная случайная величина примет конкретное значение равна нулю: . Поэтому справедливы следующие равенства:

График функции плотности распределения называется кривой распределения , и площадь, ограниченная кривой распределения и осью абсцисс, равна единице. Тогда геометрически значение функции распределения Fx(x) в точке х0 есть площадь, ограниченная кривой распределения и осью абсцисс и лежащая левее точки х0.

Задача 1. Функция плотности непрерывной случайной величины имеет вид:

Определить константу C, построить функцию распределения Fx(x) и вычислить вероятность .

Решение. Константа C находится из условия Имеем:

откуда C=3/8.

Чтобы построить функцию распределения Fx(x), отметим, что интервал делит область значений аргумента x (числовую ось) на три части: https://pandia.ru/text/78/107/images/image017_17.gif" width="264" height="49">

так как плотность x на полуоси равна нулю. Во втором случае

Наконец, в последнем случае, когда x>2,

Так как плотность обращается в нуль на полуоси . Итак, получена функция распределения

Вероятность вычислим по формуле . Таким образом,

§ 2. Числовые характеристики непрерывной случайной величины

Математическое ожидание для непрерывно распределенных случайных величин определяется по формуле https://pandia.ru/text/78/107/images/image028_11.gif" width="205" height="56 src=">,

если интеграл, стоящий справа, абсолютно сходится.

Дисперсия x может быть вычислена по формуле , а также, как и в дискретном случае, по формуле https://pandia.ru/text/78/107/images/image031_11.gif" width="123" height="49 src=">.

Все свойства математического ожидания и дисперсии , приведенные в главе 5 для дискретных случайных величин, справедливы и для непрерывных случайных величин.

Задача 2 . Для случайной величины x из задачи 1 вычислить математическое ожидание и дисперсию.

Решение.

И значит,

https://pandia.ru/text/78/107/images/image035_9.gif" width="184" height="69 src=">

График плотности равномерного распределения см. на рис. .

Рис.6.2. Функция распределения и плотность распределения. равномерного закона

Функция распределения Fx(x) равномерно распределенной случайной величины равна

Fx(x)=

Математическое ожидание и дисперсия ; .

Показательное (экспоненециальное) распределение. Непрерывная случайная величина x, принимающая неотрицательные значения, имеет показательное распределение с параметром l>0, если плотность распределения вероятностей случайной величины равна

рx(x)=

Рис. 6.3. Функция распределения и плотность распределения показательного закона.

Функция распределения показательного распределения имеет вид

Fx(x)=https://pandia.ru/text/78/107/images/image041_8.gif" width="17" height="41">.gif" width="13" height="15"> и , если ее плотность распределения равна

.

Через обозначается множество всех случайных величин, распределенных по нормальному закону с параметрами параметрами и .

Функция распределения нормально распределенной случайной величины равна

.

Рис. 6.4. Функция распределения и плотность распределения нормального закона

Параметры нормального распределения суть математическое ожидание https://pandia.ru/text/78/107/images/image048_6.gif" width="64 height=24" height="24">

В частном случае, когда https://pandia.ru/text/78/107/images/image050_6.gif" width="44" height="21 src="> нормальное распределение называется стандартным , и класс таких распределений обозначается https://pandia.ru/text/78/107/images/image052_6.gif" width="119" height="49">,

а функция распределения

Такой интеграл не вычислим аналитически (не берется в «квадратурах»), и потому для функции составлены таблицы. Функция связана с введенной в главе 4 функцией Лапласа

,

следующим соотношением . В случае же произвольных значений параметров https://pandia.ru/text/78/107/images/image043_5.gif" width="21" height="21 src="> функция распределения случайной величины связана с функцией Лапласа с помощью соотношения:

.

Поэтому вероятность попадания нормально распределенной случайной величины на интервал можно вычислять по формуле

.


Неотрицательная случайная величина x называется логарифмически нормально распределенной, если ее логарифм h=lnx подчинен нормальному закону. Математическое ожидание и дисперсия логарифмически нормально распределенной случайной величины равны Мx= и Dx=.

Задача 3. Пусть задана случайная величина https://pandia.ru/text/78/107/images/image065_5.gif" width="81" height="23">.

Решение. Здесь и https://pandia.ru/text/78/107/images/image068_5.gif" width="573" height="45">

Распределение Лапласа задается функцией fx(x)=https://pandia.ru/text/78/107/images/image070_5.gif" width="23" height="41"> и эксцесс равен gx=3.

Рис.6.5. Функция плотности распределения Лапласа.

Случайная величина x распределена по закону Вейбулла , если она имеет функцию плотности распределения, равную https://pandia.ru/text/78/107/images/image072_5.gif" width="189" height="53">

Распределению Вейбулла подчиняются времена безотказной работы многих технических устройств. В задачах данного профиля важной характеристикой является интенсивность отказа (коэффициент смертности) l(t) исследуемых элементов возраста t, определяемый соотношением l(t)=. Если a=1, то распределение Вейбулла превращается в экспоненциальное распределение, а если a=2 - в так называемое распределение Рэлея.

Математическое ожидание распределения Вейбулла: -https://pandia.ru/text/78/107/images/image075_4.gif" width="219" height="45 src=">, где Г(а) - функция Эйлера. .

В различных задачах прикладной статистики часто встречаются так называемые «усеченные» распределения. Например, налоговые органы интересуются распределением доходов тех лиц, годовой доход которых превосходит некоторый порог с0, установленный законами о налогообложении. Эти распределения оказываются приближенно совпадающими с распределением Парето. Распределение Парето задается функциями

Fx(x)=P(x.gif" width="44" height="25"> случайной величины x и монотонная дифференцируемая функция ..gif" width="200" height="51">

Здесь https://pandia.ru/text/78/107/images/image081_4.gif" width="60" height="21 src=">.

Задача 4. Случайная величина равномерно распределена на отрезке . Найти плотность случайной величины .

Решение. Из условия задачи следует, что

Далее, функция является монотонной и дифференцируемой функцией на отрезке и имеет обратную функцию , производная которой равна Следовательно,

§ 5. Пара непрерывных случайных величин

Пусть заданы две непрерывные случайные величины x и h. Тогда пара (x, h) определяет «случайную» точку на плоскости. Пару (x, h) называют случайным вектором или двумерной случайной величиной.

Совместной функцией распределения случайных величин x и h и называется функция F(x, y)=Phttps://pandia.ru/text/78/107/images/image093_3.gif" width="173" height="25">. Совместной плотностью распределения вероятностей случайных величин x и h называется функция такая, что .

Смысл такого определения совместной плотности распределения заключается в следующем. Вероятность того, что «случайная точка» (x, h) попадет в область на плоскости, вычисляется как объем трехмерной фигуры – «криволинейного» цилиндра, ограниченного поверхностью https://pandia.ru/text/78/107/images/image098_3.gif" width="211" height="39 src=">

Простейшим примером совместного распределения двух случайных величин является двумерное равномерное распределение на множестве A . Пусть задано ограниченное множество М с площадью Оно определяется как распределение пары (x, h), задаваемое с помощью следующей совместной плотности:

Задача 5. Пусть двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Вычислить вероятность неравенства x>h.

Решение. Площадь указанного треугольника равна (см. рис. № ?). В силу определения двумерного равномерного распределения совместная плотность случайных величин x, h равна

Событие соответствует множеству на плоскости, т. е. полуплоскости. Тогда вероятность

На полуплоскости B совместная плотность равна нулю вне множества https://pandia.ru/text/78/107/images/image102_2.gif" width="15" height="17">. Таким образом, полуплоскость B разбивается на два множества и https://pandia.ru/text/78/107/images/image110_1.gif" width="17" height="23"> и , причем второй интеграл равен нулю, так как там совместная плотность равна нулю. Поэтому

Если задана совместная плотность распределения для пары (x, h), то плотности и составляющих x и h называются частными плотностями и вычисляются по формулам:

https://pandia.ru/text/78/107/images/image116_1.gif" width="224" height="23 src=">

Для непрерывно распределенных случайных величин с плотностями рx(х), рh(у) независимость означает, что

Задача 6. В условиях предыдущей задачи определить, независимы ли составляющие случайного вектора x и h?

Решение . Вычислим частные плотности и . Имеем:

https://pandia.ru/text/78/107/images/image119_1.gif" width="283" height="61 src=">

Очевидно, что в нашем случае https://pandia.ru/text/78/107/images/image121_1.gif" width="64" height="25"> - совместная плотность величин x и h, а j(х, у) - функция двух аргументов, тогда

https://pandia.ru/text/78/107/images/image123_1.gif" width="184" height="152 src=">

Задача 7. В условиях предыдущей задачи вычислить .

Решение. Согласно указанной выше формуле имеем:

.

Представив треугольник в виде

https://pandia.ru/text/78/107/images/image127_1.gif" width="479" height="59">

§ 5. Плотность суммы двух непрерывных случайных величин

Пусть x и h - независимые случайные величины с плотностями https://pandia.ru/text/78/107/images/image128_1.gif" width="43" height="25">. Плотность случайной величины x + h вычисляется по формуле свертки

https://pandia.ru/text/78/107/images/image130_0.gif" width="39" height="19 src=">. Вычислить плотность суммы .

Решение. Так как x и h распределены по показательному закону с параметром , то их плотности равны

Следовательно,

https://pandia.ru/text/78/107/images/image134_0.gif" width="339 height=51" height="51">

Если x<0, то в этой формуле аргумент https://pandia.ru/text/78/107/images/image136_0.gif" width="65" height="25">отрицателен, и потому . Поэтому Если же https://pandia.ru/text/78/107/images/image140_0.gif" width="359 height=101" height="101">

Таким образом, мы получили ответ:

https://pandia.ru/text/78/107/images/image142_0.gif" width="40" height="41 "> нормально распределена с параметрами 0 и 1. Случайные величины x1 и x2 независимы и имеют нормальные распределения с параметрами а1, и а2, соответственно. Доказать, что x1 + x2 имеет нормальное распределение. Случайные величины x1, x2, ... xn распределены и независимы и имеют одинаковую функцию плотности распределения

.

Найти функцию распределения и плотность распределения величин:

а) h1 = min {x1 , x2, ...xn} ; б) h(2) = max {x1,x2, ... xn }

Случайные величины x1, x2, ... xn независимы и равномерно распределены на отрезке [а, b]. Найти функции распределения и функции плотности распределения величин

x(1) = min {x1,x2, ... xn} и x(2)= max{x1, x2, ...xn}.

Доказать, что Мhttps://pandia.ru/text/78/107/images/image147_0.gif" width="176" height="47">.

Случайная величина распределена по закону Коши Найти: а) коэффициент а; б) функцию распределения; в) вероятность попадания на интервал (-1, 1). Показать, что математическое ожидание x не существует. Случайная величина подчинена закону Лапласа с параметром l (l>0): Найти коэффициент а; построить графики плотности распределения и функции распределения; найти Mx и Dx; найти вероятности событий {|x|< и {çxç<}. Случайная величина x подчинена закону Симпсона на отрезке [-а, а], т. е. график её плотности распределения имеет вид:

Написать формулу для плотности распределения, найти Мx и Dx.

Вычислительные задачи.

Случайная точка А имеет в круге радиуса R равномерное распределение. Найти математическое ожидание и дисперсию расстояния r точки до центра круга. Показать, что величина r2 равномерно распределена на отрезке .

Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:

Вычислить константу C, функцию распределения F(x), и вероятность Плотность распределения случайной величины имеет вид:
Вычислить константу C, функцию распределения F(x), , дисперсию и вероятность Случайная величина имеет функцию распределения

Вычислить плотность случайной величины, математическое ожидание, дисперсию и вероятность Проверить, что функция =
может быть функцией распределения случайной величины. Найти числовые характеристики этой величины: Mx и Dx. Случайная величина равномерно распределена не отрезке . Выписать плотность распределения. Найти функцию распределения. Найти вероятность попадания случайной величины на отрезок и на отрезок . Плотность распределения x равна

.

Найти постоянную с, плотность распределения h = и вероятность

Р (0,25

Время безотказной работы ЭВМ распределено по показательному закону с параметром l = 0,05 (отказа в час), т. е. имеет функцию плотности

р(х) =.

Решение определенной задачи требует безотказной работы машины в течение 15 минут. Если за время решения задачи произошел сбой, то ошибка обнаруживается только по окончании решения, и задача решается заново. Найти: а) вероятность того, что за время решения задачи не произойдет ни одного сбоя; б) среднее время, за которое будет решена задача.

Стержень длины 24 см ломают на две части; будем считать, что точка излома распределена равномерно по всей длине стержня. Чему равна средняя длина большей части стержня? Отрезок длины 12 см случайным образом разрезается на две части. Точка разреза равномерно распределена по всей длине отрезка. Чему равна средняя длина малой части отрезка? Случайная величина равномерно распределена на отрезке . Найти плотность распределения случайной величины а) h1 = 2x + 1; б) h2 =-ln(1-x); в) h3 = .

Показать, что если x имеет непрерывную функцию распределения

F(x) = P(x

Найти функцию плотности и функцию распределения суммы двух независимых величин x и h c равномерными законами распределения на отрезках и соответственно. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины x и h независимы и равномерно распределены на отрезках и соответственно. Вычислить плотность суммы x+h. Случайные величины независимы и имеют показательное распределение с плотностью . Найти плотность распределения их суммы. Найти распределение суммы независимых случайных величин x и h, где x имеет равномерное на отрезке распределение, а h имеет показательное распределение с параметром l. Найти Р, если x имеет: а) нормальное распределение с параметрами а и s2 ; б) показательное распределение с параметром l; в) равномерное распределение на отрезке [-1;1]. Совместное распределение x, h является равномерным в квадрате
К ={х, у): |х| +|у|£ 2}. Найти вероятность. Являются ли x и h независимыми? Пара случайных величин x и h равномерно распределена внутри треугольника K=. Вычислить плотность x и h. Являются ли эти случайные величины независимыми? Найти вероятность . Случайные величины x и h независимы и равномерно распределены на отрезках и [-1,1]. Найти вероятность . Двумерная случайная величина (x, h) равномерно распределена в квадрате с вершинами (2,0), (0,2), (-2, 0), (0,-2). Найти значение совместной функции распределения в точке (1, -1). Случайный вектор (x, h) равномерно распределен внутри круга радиуса 3 с центром в начале координат. Написать выражение для совместной плотности распределения. Определить, зависимы ли эти случайные величины. Вычислить вероятность . Пара случайных величин x и h равномерно распределена внутри трапеции с вершинами в точках (-6,0), (-3,4), (3,4), (6,0). Найти совместную плотность распределения для этой пары случайных величин и плотности составляющих. Зависимы ли x и h? Случайная пара (x, h) равномерно распределена внутри полукруга . Найти плотности x и h, исследовать вопрос об их зависимости. Совместная плотность двух случайных величин x и h равна .
Найти плотности x, h. Исследовать вопрос о зависимости x и h. Случайная пара (x, h) равномерно распределена на множестве . Найти плотности x и h, исследовать вопрос об их зависимости. Найти М(xh). Случайные величины x и h независимы и распределены по показательному закону с параметром Найти

(НСВ )

Непрерывной называют случайную величину, возможные значения которой непрерывно занимают некоторый интервал.

Если дискретная величина может быть задана перечнем всех её возможных значений и их вероятностей, то непрерывную случайную величину, возможные значения которой сплошь занимают некоторый интервал (а , b ) задать перечнем всех возможных значений невозможно.

Пусть х – действительное число. Вероятность события, состоящего в том, что случайная величина Х примет значение, меньшее х , т.е. вероятность события Х < х , обозначим через F (x ). Если х изменяется, то, конечно, изменяется и F (x ), т.е. F (x ) – функция от х .

Функцией распределения называют функцию F (x ), определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньшее х , т.е.

F (x ) = Р (Х < х ).

Геометрически это равенство можно истолковать так: F (x ) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х .

Свойства функции распределения.

1 0 . Значения функции распределения принадлежат отрезку :

0 ≤ F (x ) ≤ 1.

2 0 . F (x ) – неубывающая функция, т.е.

F (x 2) ≥ F (x 1), если x 2 > x 1 .

Следствие 1. Вероятность того, что случайная величина примет значение, заключённое в интервале (а , b ), равна приращению функции распределения на этом интервале:

Р (а < X < b ) = F (b ) − F (a ).

Пример. Случайная величина Х задана функцией распределения

F (x ) =

Случайна величина Х 0, 2).

Согласно следствию 1, имеем:

Р (0 < X <2) = F (2) − F (0).

Так как на интервале (0, 2), по условию, F (x ) = + , то

F (2) − F (0) = (+ ) − (+ ) = .

Таким образом,

Р (0 < X <2) = .

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определённое значение, равна нулю.

3 0 . Если возможные значения случайной величины принадлежат интервалу (а , b ), то

1). F (x ) = 0 при х а ;

2). F (x ) = 1 при х b .

Следствие. Если возможные значения НСВ расположены на всей числовой оси ОХ (−∞, +∞), то справедливы предельные соотношения:

Рассмотренные свойства позволяют представить общий вид графика функции распределения непрерывной случайной величины:

Функцию распределения НСВ Х часто называют интегральной функцией .

Дискретная случайная величина тоже имеет функцию распределения:



График функции распределения дискретной случайной величины имеет ступенчатый вид.

Пример. ДСВ Х задана законом распределения

Х 1 4 8

Р 0,3 0,1 0,6.

Найти её функцию распределения и построить график.

Если х ≤ 1, то F (x ) = 0.

Если 1 < x ≤ 4, то F (x ) = р 1 =0,3.

Если 4 < x ≤ 8, то F (x ) = р 1 + р 2 = 0,3 + 0,1 = 0,4.

Если х > 8, то F (x ) = 1 (или F (x ) = 0,3 + 0,1 + 0,6 = 1).

Итак, функция распределения заданной ДСВ Х :

График искомой функции распределения:

НСВ можно задать плотностью распределения вероятностей.

Плотностью распределения вероятностей НСВ Х называют функцию f (x ) – первую производную от функции распределения F (x ):

f (x ) = .

Функция распределения является первообразной для плотности распределения. Плотность распределения ещё называют: плотность вероятности, дифференциальной функцией .

График плотности распределения называют кривой распределения .

Теорема 1. Вероятность того, что НСВ Х примет значение, принадлежащее интервалу (а , b ), равна определённому интегралу от плотности распределения, взятому в пределах от а до b :

Р (а < X < b ) = .

Р (а < X < b ) = F (b ) −F (a ) == . ●

Геометрический смысл: вероятность того, что НСВ примет значение, принадлежащее интервалу (а , b ), равна площади криволинейной трапеции, ограниченной осью ОХ , кривой распределения f (x ) и прямыми х =а и х =b .

Пример. Задана плотность вероятности НСВ Х

f (x ) =

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5;1).

Р (0,5 < X < 1) = 2= = 1 – 0,25 = 0,75.

Свойства плотности распределения :

1 0 . Плотность распределения - неотрицательная функция:

f (x ) ≥ 0.

2 0 . Несобственный интеграл от плотности распределения в пределах от −∞ до +∞ равен единице:

В частности, если все возможные значения случайной величины принадлежат интервалу (а , b ), то

Пусть f (x ) – плотность распределения, F (х ) – функция распределения, тогда

F (х ) = .

F (x ) = Р (Х < х ) = Р (−∞ < X < х ) = = , т.е.

F (х ) = . ●

Пример (*). Найти функцию распределения по данной плотности распределения:

f (x ) =

Построить график найденной функции.

Известно, что F (х ) = .

Если, х а , то F (х ) = = == 0;

Если а < x b , то F (х ) = =+ = = .

Если х > b , то F (х ) = =+ + = = 1.

F (x ) =

График искомой функции:

Числовые характеристики НСВ

Математическим ожиданием НСВ Х , возможные значения которой принадлежат отрезку [a , b ], называют определённый интеграл

М (Х ) = .

Если все возможные значения принадлежат всей оси ОХ , то

М (Х ) = .

Предполагается, что несобственный интеграл сходится абсолютно.

Дисперсией НСВ Х называют математическое ожидание квадрата её отклонения.

Если возможные значения Х принадлежат отрезку [a , b ], то

D (X ) = ;

Если возможные значения Х принадлежат всей числовой оси (−∞; +∞), то

D (X ) = .

Легко получить для вычисления дисперсии более удобные формулы:

D (X ) = − [M (X )] 2 ,

D (X ) = − [M (X )] 2 .

Среднее квадратическое отклонение НСВ Х определяется равенством

(Х ) = .

Замечание. Свойства математического ожидания и дисперсии ДСВ сохраняются и для НСВ Х .

Пример. Найти М (Х ) и D (X ) случайной величины Х , заданной функцией распределения

F (x ) =

Найдём плотность распределения

f (x ) = =

Найдём М (Х ):

М (Х ) = = = = .

Найдём D (X ):

D (X ) = − [M (X )] 2 = − = − = .

Пример (**). Найти М (Х ), D (X ) и (X ) случайной величины Х , если

f (x ) =

Найдём М (Х ):

М (Х ) = = =∙= .

Найдём D (X ):

D (X ) =− [M (X )] 2 =− = ∙−=.

Найдем (Х ):

(Х ) = = = .

Теоретические моменты НСВ.

Начальный теоретический момент порядка k НСВ Х определяется равенством

ν k = .

Центральный теоретический момент порядка k НСВ Х определяется равенством

μ k = .

В частности, если все возможные значения Х принадлежат интервалу (a , b ), то

ν k = ,

μ k = .

Очевидно:

k = 1: ν 1 = M (X ), μ 1 = 0;

k = 2: μ 2 = D (X ).

Связь между ν k и μ k как и у ДСВ :

μ 2 = ν 2 − ν 1 2 ;

μ 3 = ν 3 − 3ν 2 ν 1 + 2ν 1 3 ;

μ 4 = ν 4 − 4ν 3 ν 1 + 6 ν 2 ν 1 2 − 3ν 1 4 .

Законы распределения НСВ

Плотности распределения НСВ называют также законами распределения .

Закон равномерного распределения.

Распределение вероятностей называют равномерным , если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Плотность вероятности равномерного распределения:

f (x ) =

Её график:

Из примера (*) следует, что функция распределения равномерного распределения имеет вид:

F (x ) =

Её график:

Из примера (**) следуют числовые характеристики равномерного распределения:

М (Х ) = , D (X ) = , (Х ) = .

Пример. Автобусы некоторого маршрута идут строго по расписанию. Интервал движения 5 минут. Найти вероятность того, что пассажир, подошедший к остановке, будет ожидать очередной автобус менее 3-х минут.

Случайная величина Х – время ожидания автобуса подошедшим пассажиром. Её возможные значения принадлежат интервалу (0; 5).

Так как Х – равномерно распределённая величина, то плотность вероятности:

f (x ) = = = на интервале (0; 5).

Чтобы пассажир ожидал очередной автобус менее 3-х минут, он должен подойти к остановке в промежуток времени от 2 до 5 минут до прихода следующего автобуса:

Следовательно,

Р (2 < X < 5) == = = 0,6.

Закон нормального распределения.

Нормальным называют распределение вероятностей НСВ Х

f (x ) = .

Нормальное распределение определяется двумя параметрами: а и σ .

Числовые характеристики:

М (Х ) == = =

= = + = а ,

т.к. первый интеграл равен нулю (подынтегральная функция нечётная, второй интеграл – это интеграл Пуассона, который равен .

Таким образом, М (Х ) = а , т.е. математическое ожидание нормального распределения равно параметру а .

Учитывая, что М (Х ) = а , получим

D (X ) = = =

Таким образом, D (X ) = .

Следовательно,

(Х ) = = = ,

т.е. среднее квадратическое отклонение нормального распределения равно параметру .

Общими называют нормальное распределение с произвольными параметрами а и (> 0).

Нормированным называют нормальное распределение с параметрами а = 0 и = 1. Например, если Х – нормальная величина с параметрами а и , то U = − нормированная нормальная величина, причём М (U ) = 0, (U ) = 1.

Плотность нормированного распределения:

φ (x ) = .

Функция F (x ) общего нормального распределения:

F (x ) = ,

а функция нормированного распределения:

F 0 (x ) = .

График плотности нормального распределения называют нормальной кривой (кривой Гаусса ):

Изменение параметра а ведет к сдвигу кривой вдоль оси ОХ : вправо, если а возрастает, и влево, если а убывает.

Изменение параметра ведет: с возрастанием максимальная ордината нормальной кривой убывает, а сама кривая становится пологой; при убывании нормальная кривая становится более “островершинной” и растягивается в положительном направлении оси OY :

Если а = 0, а = 1, то нормальную кривую

φ (x ) =

называют нормированной .

Вероятность попадания в заданный интервал нормальной случайной величины.

Пусть случайная величина Х распределена по нормальному закону. Тогда вероятность того, что Х

Р (α < X < β ) = = =

Используя функцию Лапласа

Φ (х ) = ,

Окончательно получим

Р (α < X < β ) = Φ () − Φ ().

Пример. Случайная величина Х распределена по нормальному закону. Математическое ожидание и среднее квадратическое отклонение этой величины соответственно равны 30 и 10. Найти вероятность того, что Х

По условию, α =10, β =50, а =30, =1.

Р (10< X < 50) = Φ () − Φ () = 2Φ (2).

По таблице: Φ (2) = 0,4772. Отсюда

Р (10< X < 50) = 2∙0,4772 = 0,9544.

Часто требуется вычислить вероятность того, что отклонение нормально распределённой случайной величины Х по абсолютной величине меньше заданного δ > 0, т.е. требуется найти вероятность осуществления неравенства | X a | < δ :

Р (| X a | < δ ) = Р (a − δ < X < a + δ ) = Φ () − Φ () =

= Φ () − Φ () = 2Φ ().

В частности, при а = 0:

Р (| X | < δ ) = 2Φ ().

Пример. Случайная величина Х распределена нормально. Математическое ожидание и среднее квадратическое отклонение соответственно равны 20 и 10. Найти вероятность того, что отклонение по абсолютной величине будет меньше 3.

По условию, δ = 3, а = 20, =10. Тогда

Р (| X − 20| < 3) = 2 Φ () = 2Φ (0,3).

По таблице: Φ (0,3) = 0,1179.

Следовательно,

Р (| X − 20| < 3) = 0,2358.

Правило трёх сигм.

Известно, что

Р (| X a | < δ ) = 2Φ ().

Пусть δ = t , тогда

Р (| X a | < t ) = 2Φ (t ).

Если t = 3 и, следовательно, t = 3, то

Р (| X a | < 3) = 2Φ (3) = 2∙ 0,49865 = 0,9973,

т.е. получили практически достоверное событие.

Суть правила трёх сигм: если случайная величина распределена нормально, то абсолютная величина её отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения.

На практике правило трёх сигм применяют так: если распределение изучаемой случайной величины неизвестен, но условие, указанное в приведённом правиле, выполняется, то есть основание предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

Центральная предельная теорема Ляпунова.

Если случайная величина Х представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то Х имеет распределение, близкое к нормальному.

Пример. □ Пусть производится измерение некоторой физической величины. Любое измерение дает лишь приближённое значение измеряемой величины, так как на результат измерения влияют очень многие независимые случайные факторы (температура, колебания прибора, влажность и др.). Каждый из этих факторов порождает ничтожную “частную ошибку”. Однако, поскольку число этих факторов очень велико, то их совокупное действие порождает уже заметную “суммарную ошибку”.

Рассматривая суммарную ошибку как сумму очень большого числа взаимно независимых частных ошибок, мы вправе заключить, что суммарная ошибка имеет распределение, близкое к нормальному. Опыт подтверждает справедливость такого заключения. ■

Запишем условия, при которых сумма большого числа независимых слагаемых имеет распределение, близкое к нормальному.

Пусть Х 1 , Х 2 , …, Х п − последовательность независимых случайных величин, каждая из которых имеет конечные математическое ожидание и дисперсию:

М (Х k ) = a k , D (Х k ) = .

Введём обозначения:

S n = , A n = , B n = .

Обозначим функцию распределения нормированной суммы через

F п (x ) = P (< x ).

Говорят, что к последовательности Х 1 , Х 2 , …, Х п применима центральная предельная теорема, если при любых х функция распределения нормированной суммы при п → ∞ стремится к нормальной функции распределения:

Закон показательного распределения.

Показательным (экспоненциальным ) называют распределение вероятностей НСВ Х , которое описывается плотностью

f (x ) =

где λ – постоянная положительная величина.

Показательное распределение определяется одним параметром λ .

График функции f (x ):

Найдём функцию распределения:

если, х ≤ 0, то F (х ) = = == 0;

если х ≥ 0, то F (х ) == += λ∙ = 1 − е −λх .

Итак, функция распределения имеет вид:

F (x ) =

График искомой функции:

Числовые характеристики:

М (Х ) == λ = = .

Итак, М (Х ) = .

D (X ) =− [M (X )] 2 = λ − = = .

Итак, D (X ) = .

(Х ) = = , т.е. (Х ) = .

Получили, что М (Х ) = (Х ) = .

Пример. НСВ Х

f (x ) = 5е −5х при х ≥ 0; f (x ) = 0 при х < 0.

Найти М (Х ), D (X ), (Х ).

По условию, λ = 5. Следовательно,

М (Х ) = (Х ) = = = 0,2;

D (X ) = = = 0,04.

Вероятность попадания в заданный интервал показательно распределённой случайной величины.

Пусть случайная величина Х распределена по показательному закону. Тогда вероятность того, что Х примет значение из интервала ), равна

Р (а < X < b ) = F (b ) − F (a ) = (1 − е −λ b ) − (1 − е −λ a ) = е −λ a е −λ b .

Пример. НСВ Х распределена по показательному закону

f (x ) = 2е −2х при х ≥ 0; f (x ) = 0 при х < 0.

Найти вероятность того, что в результате испытания Х примет значение из интервала ).

По условию, λ = 2. Тогда

Р (0,3 < X < 1) = е − 2∙0,3 − е − 2∙1 = 0,54881− 0,13534 ≈ 0,41.

Показательное распределение широко применяется в приложениях, в частности в теории надёжности.

Будем называть элементом некоторое устройство независимо от того, “простое” оно или “сложное”.

Пусть элемент начинает работать в момент времени t 0 = 0, а по истечении времени t происходит отказ. Обозначим через Т непрерывную случайную величину – длительность времени безотказной работы элемента. Если элемент проработал безотказно (до наступления отказа) время, меньшее t , то, следовательно, за время длительностью t наступит отказ.

Таким образом, функция распределения F (t ) = Р (T < t ) определяет вероятность отказа за время длительностью t . Следовательно, вероятность безотказной работы за это же время длительностью t , т.е. вероятность противоположного события T > t , равна

R (t ) = Р (T > t ) = 1− F (t ).

Функцией надёжности R (t ) называют функцию, определяющую вероятность безотказной работы элемента за время длительностью t :

R (t ) = Р (T > t ).

Часто длительность времени безотказной работы элемента имеет показательное распределение, функция распределения которого

F (t ) = 1 − е −λ t .

Следовательно, функция надёжности в случае показательного распределения времени безотказной работы элемента имеет вид:

R (t ) = 1− F (t ) = 1− (1 − е −λ t ) = е −λ t .

Показательным законом надёжности называют функцию надёжности, определяемую равенством

R (t ) = е −λ t ,

где λ – интенсивность отказов.

Пример. Время безотказной работы элемента распределено по показательному закону

f (t ) = 0,02е −0,02 t при t ≥0 (t – время).

Найти вероятность того, что элемент проработает безотказно 100 часов.

По условию, постоянная интенсивность отказов λ = 0,02. Тогда

R (100) = е − 0,02∙100 = е − 2 = 0,13534.

Показательный закон надёжности обладает важным свойством: вероятность безотказной работы элемента на интервале времени длительностью t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t (при заданной интенсивности отказов λ ).

Другими словами, в случае показательного закона надёжности безотказная работа элемента “в прошлом” не сказывается на величине вероятности его безотказной работы “в ближайшем будущем”.

Указанным свойством обладает только показательное распределение. Поэтому, если на практике изучаемая случайная величина этим свойством обладает, то она распределена по показательному закону.

Закон больших чисел

Неравенство Чебышева.

Вероятность того, что отклонение случайной величины Х от её математического ожидания по абсолютной величине меньше положительного числа ε , не меньше, чем 1 – :

Р (|X M (X )| < ε ) ≥ 1 – .

Неравенство Чебышева имеет для практики ограниченное значение, поскольку часто дает грубую, а иногда и тривиальную (не представляющую интереса) оценку.

Теоретическое значение неравенства Чебышева весьма велико.

Неравенство Чебышева справедливо для ДСВ и НСВ .

Пример. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом отказов за время Т окажется меньше двух.

Пусть Х – число отказавших элементов за время Т .

Среднее число отказов – это математическое ожидание, т.е. М (Х ).

М (Х ) = пр = 10∙0,05 = 0,5;

D (X ) = npq =10∙0,05∙0,95 = 0,475.

Воспользуемся неравенством Чебышева:

Р (|X M (X )| < ε ) ≥ 1 – .

По условию, ε = 2. Тогда

Р (|X – 0,5| < 2) ≥ 1 – = 0,88,

Р (|X – 0,5| < 2) ≥ 0,88.

Теорема Чебышева.

Если Х 1 , Х 2 , …, Х п – попарно независимые случайные величины, причём дисперсии их равномерно ограничены (не превышают постоянного числа С ), то, как бы мало ни было положительное число ε , вероятность неравенства

|− | < ε

Будет как угодно близка к единице, если число случайных величин достаточно велико или, другими словами,

− | < ε ) = 1.

Таким образом, теорема Чебышева утверждает, что если рассматривается достаточно большое число независимых случайных величин, имеющих ограниченные дисперсии, то почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым.

Если М (Х 1) = М (Х 2) = …= М (Х п ) = а , то, в условиях теоремы, будет иметь место равенство

а | < ε ) = 1.

Сущность теоремы Чебышева такова: хотя отдельные независимые случайные величины могут принимать значения далёкие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения близкие к определенному постоянному числу (или к числу а в частном случае). Иными словами, отдельные случайные величины могут иметь значительны разброс, а их среднее арифметическое рассеянно мало.

Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных величин, но можно предвидеть, какое значение примет их среднее арифметическое.

Для практики теорема Чебышева имеет неоценимое значение: измерение некоторой физической величины, качества, например, зерна, хлопка и другой продукции и т.д.

Пример. Х 1 , Х 2 , …, Х п задана законом распределения

Х п пα 0 пα

Р 1 −

Применима ли к заданной последовательности теорема Чебышева?

Для того, чтобы к последовательности случайных величин была применима теорема Чебышева, достаточно, чтобы эти величины: 1. были попарно независимыми; 2). имели конечные математические ожидания; 3). имели равномерно ограниченные дисперсии.

1). Так как случайные величины независимы, то они подавно попарно независимы.

2). М (Х п ) = −пα ∙+ 0∙(1 − ) +

Теорема Бернулли.

Если в каждом из п независимых испытаний вероятность р появления события А постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности р по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε – сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство

р | < ε ) = 1.

Теорема Бернулли утверждает, что при п → ∞ относительная частота стремится по вероятности к р. Коротко теорему Бернулли можно записать в виде:

Замечание. Последовательность случайных величин Х 1 , Х 2 , … сходится по вероятности к случайной величине Х , если для любого сколь угодно малого положительного числа ε вероятность неравенства | Х n Х | < ε при п → ∞ стремится к единице.

Теорема Бернулли объясняет, почему относительная частота при достаточно большом числе испытаний обладает свойством устойчивости и оправдывает статистическое определение вероятности.

Цепи Маркова

Цепью Маркова называют последовательность испытаний, в каждом из которых появляется только одно из k несовместных событий А 1 , А 2 ,…, А k полной группы, причём условная вероятность р ij (S ) того, что в S -м испытании наступит событие А j (j = 1, 2,…, k ), при условии, что в (S – 1)-м испытании наступило событий А i (i = 1, 2,…, k ), не зависит от результатов предшествующих испытаний.

Пример. □ Если последовательность испытаний образует цепь Маркова и полная группа состоит из 4 несовместных событий А 1 , А 2 , А 3 , А 4 , причём известно, что в 6-м испытании появилось событие А 2 , то условная вероятность того, что 7-м испытании наступит событие А 4 , не зависит от того, какие события появились в 1-м, 2-м,…, 5-м испытаниях. ■

Ранее рассмотренные независимые испытания являются частным случаем цепи Маркова. Действительно, если испытания независимы, то появление некоторого определенного события в любом испытании не зависит от результатов ранее произведенных испытаний. Отсюда следует, что понятие цепи Маркова является обобщением понятия независимых испытаний.

Запишем определение цепи Маркова для случайных величин.

Последовательность случайных величин Х t , t = 0, 1, 2, …, называется цепью Маркова с состояниями А = { 1, 2, …, N }, если

, t = 0, 1, 2, …,

и при любых ( п, .,

Распределение вероятностей Х t в произвольный момент времени t можно найти, воспользовавшись формулой полной вероятности

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }