Определенные и неопределенные интегралы сообщение. Простейшие свойства интегралов

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Изучаем понятие « интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.


Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


« Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Данные свойства используются для осуществления преобразований интеграла с целью его приведения к одному из элементарных интегралов и дальнейшему вычислению.

1. Производная неопределенного интеграла равна подынтегральной функции:

2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

Причем a ≠ 0

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

Причем a ≠ 0 ˄ b ≠ 0

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной , который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

Сначала мы применили свойство 5, затем свойство 4, затем воспользовались таблицей первообразных и получили результат.

Алгоритм нашего онлайн калькулятора интегралов поддерживает все перечисленные выше свойства и без труда найдет подробное решение для вашего интеграла.

Данные свойства используются для осуществления преобразований интеграла с целью его приведения к одному из элементарных интегралов и дальнейшему вычислению.

1. Производная неопределенного интеграла равна подынтегральной функции:

2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

Причем a ≠ 0

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

Причем a ≠ 0 ˄ b ≠ 0

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной , который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

Сначала мы применили свойство 5, затем свойство 4, затем воспользовались таблицей первообразных и получили результат.

Алгоритм нашего онлайн калькулятора интегралов поддерживает все перечисленные выше свойства и без труда найдет подробное решение для вашего интеграла.

Первообразная и неопределенный интеграл.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C, для произвольной константы С, причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением, а f(x) – подынтегральной функцией. Подынтегральное выражение представляет собой дифференциал функции f(x).

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

Табличные интегралы


Простейшие свойства интегралов

1. Производная результата интегрирования равна подынтегральной функции.

2. Неопределенный интеграл дифференциала функции равен сумме самой функции и произвольной константы.

3. Коэффициент можно выносить за знак неопределенного интеграла.

4. Неопределенный интеграл суммы/разности функций равен сумме/разности неопределенных интегралов функций.

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.

Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;



второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

1.4.Инвариантность форм интегрирования.

Инвариантное интегрирование - вид интегрирования для функций, аргументом которых являются элементы группы или точки однородного пространства (любую точку такого пространства можно перевести в другую заданным действием группы).

функции f(x)сводится к вычислению интеграла от дифференциальной формы f.w, где

Явная ф-ла для r(х)приводится ниже. Условие согласования имеет вид .

здесь Tg означает оператор сдвига на X с помощью gОG: Tgf(x)=f(g-1x). Пусть X=G - топология, группа, действующая на себе левыми сдвигами. И. и. существует тогда и только тогда, когда G локально компактна (в частности, на бесконечномерных группах И. и. не существует). Для подмножества И. и. характеристических функции cA (равной 1 на A и 0 вне А)задаёт левую меру Xаара m(A). Определяющим свойством этой меры является её инвариантность при левых сдвигах: m(g-1A)=m(А)для всех gОG. Левая мера Хаара на группе определена однозначно с точностью до положит, скалярного множителя. Если известна мера Хаара m, то И. и. функции f даётся формулой . Аналогичными свойствами обладает правая мера Хаара. Существует непрерывный гомоморфизм (отображение, сохраняющее групповое свойство) DG группы G в группу (относительно умножения) положит. чисел, для которого

где dmr и dmi - правая и левая меры Хаара. Функцию DG(g) наз. модулем группы G. Если , то группа G наз. унимодулярной; в этом случае правая и левая меры Хаара совпадают. Компактные, полупростые и нильпотентные (в частности, коммутативные) группы унимодулярны. Если G - n-мерная группа Ли и q1, ...,qn - базис в пространстве левоинвариантных 1-форм на G, то левая мера Хаара на G задаётся n-формой . В локальных координатах для вычисления

форм qi можно воспользоваться любой матричной реализацией группы G: матричная 1-форма g-1dg левоинвариантна, а её коэф. являются левоинвариантными скалярными 1-формами, из которых и выбирается искомый базис. Напр., полная матричная группа GL(n, R)унимодулярна и мера Хаара на ней задаётся формой. Пусть X=G/H - однородное пространство, для которого локально компактная группа G является группой преобразований, а замкнутая подгруппа Н - стабилизатором некоторой точки. Для того чтобы на X существовало И. и., необходимо и достаточно, чтобы для всех hОH выполнялось равенство DG(h)=DH(h). В частности, это верно в случае, когда Н компактна или полупроста. Полной теории И. и. на бесконечномерных многообразиях не существует.

Замена переменных.

Пусть функция y = f (x ) определена на отрезке [a , b ], a < b . Выполним следующие операции:

1) разобьем [a , b ] точками a = x 0 < x 1 < ... < x i - 1 < x i < ... < x n = b на n частичных отрезков [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ];

2) в каждом из частичных отрезков [x i - 1 , x i ], i = 1, 2, ... n , выберем произвольную точку и вычислим значение функции в этой точке: f (z i ) ;

3) найдем произведения f (z i ) · Δx i , где – длина частичного отрезка [x i - 1 , x i ], i = 1, 2, ... n ;

4) составиминтегральную сумму функции y = f (x ) на отрезке [a , b ]:

С геометрической точки зрения эта сумма σ представляет собой сумму площадей прямоугольников, основания которых – частичные отрезки [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ], а высоты равны f (z 1 ) , f (z 2 ), ..., f (z n ) соответственно (рис. 1). Обозначим через λ длину наибольшего частичного отрезка:

5) найдем предел интегральной суммы, когда λ → 0.

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [a , b ] на частичные отрезки, ни от выбора точек z i в них, то этот предел называется определенным интегралом от функции y = f (x ) на отрезке [a , b ] и обозначается

Таким образом,

В этом случае функция f (x ) называется интегрируемой на [a , b ]. Числа a и b называются соответственно нижним и верхним пределами интегрирования, f (x ) – подынтегральной функцией, f (x ) dx – подынтегральным выражением, x – переменной интегрирования; отрезок [a , b ] называется промежутком интегрирования.

Теорема 1. Если функция y = f (x ) непрерывна на отрезке [a , b ], то она интегрируема на этом отрезке.

Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

Если a > b , то, по определению, полагаем

2. Геометрический смысл определенного интеграла

Пусть на отрезке [a , b ] задана непрерывная неотрицательная функция y = f (x ) . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f (x ) , снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

Определенный интеграл от неотрицательной функции y = f (x ) с геометрической точки зрения равен площади криволинейной трапеции, ограниченной сверху графиком функции y = f (x ) , слева и справа – отрезками прямых x = a и x = b , снизу – отрезком оси Ох.

3. Основные свойства определенного интеграла

1. Значение определенного интеграла не зависит от обозначения переменной интегрирования:

2. Постоянный множитель можно выносить за знак определенного интеграла:

3. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

4.Если функция y = f (x ) интегрируема на [a , b ] и a < b < c , то

5. (теорема о среднем) . Если функция y = f (x ) непрерывна на отрезке [a , b ], то на этом отрезке существует точка , такая, что

4. Формула Ньютона–Лейбница

Теорема 2. Если функция y = f (x ) непрерывна на отрезке [a , b ] и F (x ) – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

которая называется формулой Ньютона–Лейбница. Разность F (b ) - F (a ) принято записывать следующим образом:

где символ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

Пример 1. Вычислить интеграл

Решение. Для подынтегральной функции f (x ) = x 2 произвольная первообразная имеет вид

Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид:

5. Замена переменной в определенном интеграле

Теорема 3. Пусть функция y = f (x ) непрерывна на отрезке [a , b ]. Если:

1) функция x = φ (t ) и ее производная φ "(t ) непрерывны при ;

2) множеством значений функции x = φ (t ) при является отрезок [a , b ];

3) φ (a ) = a , φ (b ) = b , то справедлива формула

которая называется формулой замены переменной в определенном интеграле.

В отличие от неопределенного интеграла, в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования α и β (для этого надо решить относительно переменной t уравнения φ (t ) = a и φ (t ) = b ).

Вместо подстановки x = φ (t ) можно использовать подстановку t = g (x ) . В этом случае нахождение новых пределов интегрирования по переменной t упрощается: α = g (a ) , β = g (b ) .

Пример 2 . Вычислить интеграл

Решение. Введем новую переменную по формуле . Возведя в квадрат обе части равенства , получим 1 + x = t 2 , откуда x = t 2 - 1, dx = (t 2 - 1)"dt = 2tdt . Находим новые пределы интегрирования. Для этого в формулу подставим старые пределы x = 3 и x = 8. Получим: , откуда t = 2 и α = 2; , откуда t = 3 и β = 3. Итак,

Пример 3. Вычислить

Решение. Пусть u = ln x , тогда , v = x . По формуле (4)